Dirac structures for generalized
نویسنده
چکیده
We establish some fundamental relations between Dirac subbundles L for the generalized Courant algebroid (A⊕A, φ+W ) over a differentiable manifold M and the associated Dirac subbubndles L̃ for the corresponding Courant algebroid Ã⊕ Ã over M × IR.
منابع مشابه
Reduction of Jacobi Manifolds via Dirac Structures Theory
We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,Λ, E) for which 1 is an admissible function and Jacobi quotient manifolds of M . We study Jacobi reductions ...
متن کاملDirac Structures and Generalized Complex Structures on TM × R h by Izu Vaisman
We consider Courant and Courant-Jacobi brackets on the stable tangent bundle TM ×R of a differentiable manifold and corresponding Dirac, Dirac-Jacobi and generalized complex structures. We prove that Dirac and Dirac-Jacobi structures on TM × R can be prolonged to TM × R, k > h, by means of commuting infinitesimal automorphisms. Some of the stable, generalized, complex structures are a natural g...
متن کاملOn Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems
In the present paper we elaborate on the underlying Hamiltonian structure of interconnected energy-conserving physical systems. It is shown that a power-conserving interconnection of port-controlled generalized Hamiltonian systems leads to an implicit generalized Hamiltonian system, and a power-conserving partial interconnection to an implicit port-controlled Hamil-tonian system. The crucial co...
متن کاملConstructing Equivalence-preserving Dirac Variational Integrators with Forces
The dynamical motion of mechanical systems possesses underlying geometric structures, and preserving these structures in numerical integration improves the qualitative accuracy and reduces the long-time error of the simulation. For a single mechanical system, structure preservation can be achieved by adopting the variational integrator construction. This construction has been generalized to mor...
متن کاملDependence on the Spin Structure of the Eta and Rokhlin Invariants
We study the dependence of the eta invariant ηD on the spin structure, where D is a twisted Dirac operator on a (4k+ 3)-dimensional spin manifold. The difference between the eta invariants for two spin structures related by a cohomolgy class which is the reduction of a H(M,Z)-class is shown to be a half integer. As an application of the technique of proof the generalized Rokhlin invariant is sh...
متن کامل