Dirac structures for generalized

نویسنده

  • Joana M. Nunes da Costa
چکیده

We establish some fundamental relations between Dirac subbundles L for the generalized Courant algebroid (A⊕A, φ+W ) over a differentiable manifold M and the associated Dirac subbubndles L̃ for the corresponding Courant algebroid Ã⊕ Ã over M × IR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Jacobi Manifolds via Dirac Structures Theory

We first recall some basic definitions and facts about Jacobi manifolds, generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures. We establish an one-one correspondence between reducible Dirac structures of the generalized Lie bialgebroid of a Jacobi manifold (M,Λ, E) for which 1 is an admissible function and Jacobi quotient manifolds of M . We study Jacobi reductions ...

متن کامل

Dirac Structures and Generalized Complex Structures on TM × R h by Izu Vaisman

We consider Courant and Courant-Jacobi brackets on the stable tangent bundle TM ×R of a differentiable manifold and corresponding Dirac, Dirac-Jacobi and generalized complex structures. We prove that Dirac and Dirac-Jacobi structures on TM × R can be prolonged to TM × R, k > h, by means of commuting infinitesimal automorphisms. Some of the stable, generalized, complex structures are a natural g...

متن کامل

On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems

In the present paper we elaborate on the underlying Hamiltonian structure of interconnected energy-conserving physical systems. It is shown that a power-conserving interconnection of port-controlled generalized Hamiltonian systems leads to an implicit generalized Hamiltonian system, and a power-conserving partial interconnection to an implicit port-controlled Hamil-tonian system. The crucial co...

متن کامل

Constructing Equivalence-preserving Dirac Variational Integrators with Forces

The dynamical motion of mechanical systems possesses underlying geometric structures, and preserving these structures in numerical integration improves the qualitative accuracy and reduces the long-time error of the simulation. For a single mechanical system, structure preservation can be achieved by adopting the variational integrator construction. This construction has been generalized to mor...

متن کامل

Dependence on the Spin Structure of the Eta and Rokhlin Invariants

We study the dependence of the eta invariant ηD on the spin structure, where D is a twisted Dirac operator on a (4k+ 3)-dimensional spin manifold. The difference between the eta invariants for two spin structures related by a cohomolgy class which is the reduction of a H(M,Z)-class is shown to be a half integer. As an application of the technique of proof the generalized Rokhlin invariant is sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005